
Pergamon 
J. Appl. Maths Mechs, Vol. 58, No. 4, pp. 749-X4,1994 

Copyright @ 1995 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0021-8928/94 $24.00+0.00 
0021-8928(94)OOQQ-9 

THE POINT-CIRCLE VORTEX-f 

S. K. BETYAYEV, A. M. GAIFULLIN and S. V. GORDEYEV 

Zhukovskii, Moscow Region 

(Received 3 August 1993) 

A new kind of vortex structure-the point-circle vortex (PCV)-is investigated. It can preserve its 

symmetry as it evolves with time. A leap-forging PCV is discussed together with its randomization and 

collapse. 

The evolution of a system of N point vortices is described by the equations [l] 
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dt 

c- 
21u’ k+j zj - Zk 

(j = l,...,N) 

which admit of the Kirchhoff invariants 
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where zj is the complex coordinate of a vortex, y, is its circulation, and the bar denotes conjugation. 
Here and henceforth summation begins with the term corresponding to the index 1. 

We consider a PCV-a system point vortices located on n concentric circles so that the circulations I, 
(a=l, . ..) II) of all the vortices situated on the crth circle are the same, they are separated by equal 

angular intervals 27clN, and the number of vortices Non each circle is the same (Fig. 1, with the vortices 

shown by small circles). For N = 1 the system of II point vortices is not a PCV. 
A general remark should be made about investigations of the stability of symmetric clusters. One can 

either investigate the symmetry breaking of the system as a whole, or one can fii the symmetry as an exact 
feature of the problem, and investigate the instability of the resulting product. This splitting of the 
problem provides a single approach to understanding the mechanism of instability for vortex structures. 

In the case of a PCV one can follow the behaviour of all nN vortices simultaneously. Then the resulting 
“cloud” of vortices demonstrates symmetry instability similar to the Hehnholtz instability [2] inherent in 

contact-discontinuities: the PCV is immediately disrupted [3]. In the other case, choosing a single vortex 

on each circle and symmetrically fixing the positions of the remaining vortices, one can follow the 
instability of n vortices. The mechanism of this instability, which is significantly different from the 

Helmholtz instability, is the subject of this paper. 
Thus the PCV will rotate about its centre r = 0 preserving its symmetry, i.e. equal angular distances 

between vortices lying on any chosen circle. The evolution of the PCV is governed by the following 

parameters: N, n, I,, r,(O), e,(O) where ‘h(O) and Et,(O) are the values of the polar coordinates of a 
vortex chosen arbitrarily on the ath circle at initial time t=O. Of these 3n+2 parameters e,(O) is 
unimportant, and hence the number of governing parameters is 3n + l.The value of r,(f) could be equal to 
zero. 
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Fig. 1 

With suitably chosen P, passage to the limit N + - produces a system of concentric vortex sheets. 

Unlike a contact discontinuity the Bernoulli number at a vortex sheet is constant. Hence in the limiting 
stationary vortex sheet case that we are considering, their velocity will vary in direction, but not in 
magnitude. From this condition we conclude that the passage to the limit of vortex sheets is correct if the 
circulation of the vortices is specified by the recurrence relations 

I-, = -zai’r,, r, $0, ‘1 =o 
k 

From the definition of the PCV the coordinator of the jth vortex located on the ath circle is given by 

the relation 

$ =raexp[i(8a+21tj/N)] 

Decomposing the sums in (1) into two parts, one of which is over vortices lying on the same circle, and 
the other is over vortices located on the other circles, we obtain 

qQt) 
dt 

To fix our ideas we shall follow the vortex numbered N. The series over k in (3) are easily summed 

E 1 1 

k 1 -xdexp[i(&+Oq3)l = 1- x$exp’(iNtQ) 

(3) 

cp=2xlN, x@=qIr,, Bcrs=8,-,-8,, a$=1 ,..., n 

After reduction system (3) can be represented in the form 
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(4) 

The first invariant I,, expressing the law of conservation for the “centre of gravity” of the system, is 
equal to zero for the PCV. The second and third invariants, expressing the conservation of dispersion and 
energy [l], have the form 

(5) 

We will consider some special cases. 

A unnry PCV (n = 1). The solution is obtained in closed form 

r = const , de_ N-1 r 

dt 4xr2N 

A binary PCV (n = 2). With the help of the second and third invariants (5) one can reduce the order of 

system (4). The evolution of the PCV is described by one differential and one algebraic equation in the 

variables x = xr2, 0 = 8,, 

dx2 I2 sin N0 -_=-- 
dt 27442 

4 =&2 142 +%[(N-lh~ +%12llnq + 

+%W-1)522 +%211nw2 +&I +522)lnN (6) 

A simple graphical method of investigating the evolution of system (6) makes use of the phase 

trajectories I,($, 0) = const. In Fig. 2 we show a typical phase trajectory topology (N = 5, Z2 = 2, I, = Iz = 

1). The rectangle 0~~‘<1, 0~8~rrIN was chosen because the family of trajectories in the interval 
1 s rf s 2 and trajectories in the rectangle 0 s rf G 1, x/N s EI s 2x1 N are symmetric about the line 
r: = 1 to the trajectories shown in Fig. 2. Furthermore, phase trajectories in the 0 c 8 G 2x/N sector are 
periodically repeated in the sectors 2rrk / N s 8 s 2n(k + l)/ N, k = 1, . . . , N - 1. 

The phase plane is divided into two domains with fundamentally different regimes. The boundary 
between these domains is shown by the dashed line. In domain 1, which lies below the dashed line in Fig. 
2, only weak interaction is observed and the vortex circles, rotating with different velocities, do not pass 
through one another. In domain 2, which lies above the dashed line, a strong (“leap-frog”) interaction is 

observed, with the vortex circles periodically passing through one another. The equation for the dashed 
line is obtained from the relation 

13(x,8)=13(Z2Z2, x:/N) (7) 

In the case I, =2, I, =I, = 1 shown in Fig. 2 the minimum value x=xrmn is reached at O=O; from 
relation (7) it follows that 
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Fig. 2. 

22N-3x$;‘(x$, -1)2 =(1+x$,) 2N-I 

As N+m wehave x,,=l-alN where a=ln(3+48). 

In Fig. 3 we show an example of the time dependence of the radii r,(t), r,(t) of the circles for the 

strongly interacting case when N = 5, p, = 1, I, = 2. 
Point vortices are a computationally necessary mathematical idealization of actual vortex fields: three - 

dimensional vortices or lines of tangential velocity discontinuity. Such a discretization adds new non- 

intrinsic properties, one of which is the strong interaction. Hence in numerical calculations of the 
evolution of a spiral vortex sheet (Fig. 4) the discrete vortex method should avoid too coarse a decompos- 
ition step, in order not to end up in the strong interaction domain, i.e. with a non-physical solution. Using 
the results of the above model problem one can make recommendations on the choice of step size relative 
to the distance between the loops of the spiral. 

TripZe PCV (n = 3). Using the invariants I, and Z3 one can reduce the order of system (4) to four, but 

it remains complicated. Hence this vortex ensemble was investigated numerically, using a fourth-order 

Runge-Kutta algorithm. 
Analysis of the motion of this system naturally revealed many more interaction situations than for the 

binary PCV. We will list them. 

Fig. 3. Fig. 4. 
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1. Weak interaction. This is similar to the binary PCV case (Fig. 5). 

2. Pairwise strong interaction. In this case vortices from two circles strongly interact with each other 
and change places. The third vortex circle may (Fig. 6) or may not (Fig. 7) strongly interact with the two 
“coupled” circles. 

3. Triple strong interaction (Fig. 8). 
4. Chaotic interaction According to statistical mechanics [5, 61, chaos can appear in a system described 

by three or more non-linear differential equations [7]. One possible scenario for the onset of chaotic 

behaviour is the appearance of an c-layer on the separatrices in phase space (81. Numerical investigation 
of system (4) revealed a manifold of chaotic regimes. In Fig. 9 we show a case when the system behaved 
randomly at first, but after some time fell into a strong periodic interaction domain, and such scenarios 

(“relaminarization”) are frequently encountered. An intermittency regime is also observed in which the 

system alternates between a chaotic regime and a pairwise interaction regime (Fig. 10). It should be noted 
that the system is very sensitive to the initial conditions. 

Fig. 5. Fig. 6. 

Fig. 7. Pig. 8 
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Fig. 9. Fig. IO. 

We know that a suitably positioned system of three or more vortices can undergo self-similar collapse 
[9]. Such a collapse has not been revealed in numerical observations of PCVs. It would appear to be 

unstable, and when three vortices approach one another the influence of the remaining vortices should be 

considered as a non-self-similar perturbation of the self-similar collapse process. 
Unlike the collapse process, which is completely deterministic if initial vortex interactions consistent 

with it are specified, the break-up of a single point vortex when there are no external influeuces cannot 
occur by natural causally dete~il~ed processes: there is no initial start time for the break-up or for its 
other characteristics. Indeterminancy in the break-up of a vortex leads to indeterminancy in the dynamics 
of vortex systems and, possibly, in ideal fluid dynamics in general. Such an unusual mechanism for the 
“arrow of time” has no analogue in particle dynamics. 

Problems of the existence and stability of stationary and uniformly rotating clusters of point vortices 
have been discussed in [lo]. 
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